
61202880L1-29.3C
April 2014

Configuration Guide

Tcl Scripting in AOS

This configuration guide will assist in the use of the tool command
language (Tcl) scripting language as it relates to ADTRAN Operating
System (AOS) products. To achieve this objective this guide presents a
basic tutorial in the Tcl language with an overview of Tcl syntax and a
listing of available Tcl commands along with definitions and examples of
their use. Example scripts are provided and broken down into their
component elements. Commands used in interfacing Tcl with AOS, with
regard to uploading and running scripts and accessing AOS commands,
are explained as well.

This guide consists of the following sections:

• Overview on page 2

• Hardware and Software Requirements and Limitations on page 2

• Basic Tcl Syntax on page 2

• Command Reference Guide on page 5

• Creating Tcl Scripts in AOS on page 81

• Running Tcl Scripts in AOS on page 81

• Example Scripts on page 82

• Tcl Quick Configuration Guide on page 90

• Troubleshooting on page 91

Overview Tcl Scripting in AOS

 2 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

Overview

Tcl is a highly extensible and robust language used in a wide variety of applications. It is often used in
graphical user interfaces (GUIs) and for testing purposes, but is most commonly used for scripted
applications. It is easy to learn, platform independent, and provides for rapid development.

In AOS applications, Tcl is most commonly used for generating scripts that help automate tasks, such as
network configuration and network connectivity tests. For instance, in many organizations there are a
limited number of required network configurations. In order to minimize the training and time required to
set these manually, a Tcl script can be used. These scripts can access AOS commands and can be entirely
automated or allow for multiple configurations within a single script by requiring user input.

The Tcl scripting language also works congruently with the AOS flash provisioning feature, allowing a Tcl
script to run when initially configuring the unit. This feature minimizes the need for highly trained
personnel to create relatively sophisticated configurations when installing a unit in the field.

It is also possible to run Tcl scripts based off tracks. By running scripts based off the pass or fail status of a
track created to monitor network conditions, a wide variety of options related to dynamic changes in unit
configuration are possible.

Hardware and Software Requirements and Limitations

Tcl support was introduced in AOS version 16.0 and is currently available in all ADTRAN hardware
platforms running AOS 16.0 or later.

Basic Tcl Syntax

Tcl scripts are made up of Tcl commands. Each Tcl command is separated by a new line. Commands are
organized within a line by using white space as well as different types of bracket characters that help
determine how the command, or string of commands, is parsed by the Tcl interpreter. Tcl commands all use
the same basic format consisting of the command name followed by one or more arguments. Arguments
are comprised of operators and operands. There are a fixed number of operators in Tcl that typically
correspond with the same operator in the C programming language. Operands can be numerical (integer,
floating point, etc.) in nature or may consist of letters or an alphanumeric string. Operands are typically
provided by user input or pre-determined by the writer of the script, and may even be defined in another
command within the Tcl script.

Variables

Variables are a critical component of the Tcl script. They are used to hold information. This information
may be predetermined in the script, generated by user input, or defined in another Tcl expression. Unlike
many programming languages, variables in Tcl do not need to be declared but can be created the first time
they are needed using the set command. Variables must start with an alphanumeric character and can
consist of numbers, letters, or alphanumeric strings. A variable can also contain a list that consists of
information separated by whitespace, and can be manipulated by a variety of list commands. It can also
contain array data that can be manipulated by the array command on page 28.

Tcl commands are case sensitive. For example ‘Set’, ‘SET’, and ‘set’ are not equivalent. All
Tcl commands should be lowercase. Variable names may contain upercase letters as long as
the case is consistant throughout the script.

Tcl Scripting in AOS Basic Tcl Syntax

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 3

Commands

Commands execute the actual work within a script. Commands typically return values that can be
manipulated by the script to achieve a variety of results. Commands in Tcl follow the form of the command
name followed by any number of arguments. There is an extensive set of commands available in the Tcl
language. The AOS version of Tcl has a number of different commands that are specific to AOS.
Additionally, some traditional Tcl commands are not available in AOS. Table 1 on page 3 lists all Tcl
commands available in AOS. Refer to the Command Reference Guide on page 5 for a definition of each
command along with its syntax and a usage example. The Command Reference Guide is split into two
parts. The first contains information on the most commonly used Tcl commands, and the second contains
all remaining commands.

Operators

Tcl has a variety of valid operators built in. Operators are used in commands to effect a change or
comparison between two or more numbers, letters, or strings. These operators perform mathematical, as
well as Boolean functions, from adding and subtracting values to determining the equality or inequality of
a statement. Operators are powerful tools within the scripting language. See Table 1 on page 3 for a list of
many of the basic Tcl operators. This list is not all-inclusive but should provide enough functionality for all
but the most advanced scripts. For those familiar with programming in other languages the majority of
these operators and their functions will be quite familiar.

Table 1. Tcl Operators

Operator Name

! Logical Not

* Multiply

/ Divide

% Remainder

+ Add

- Subtract

< Boolean Less Than

> Boolean Greater Than

<= Boolean Less or Equal

>= Boolean Greater or Equal

== Boolean Equal

!= Boolean Not Equal

&& Logical And

|| Logical Or

Basic Tcl Syntax Tcl Scripting in AOS

 4 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

Special Characters

In Tcl syntax, certain special characters influence the way the script is parsed. These characters dictate
much of what is required to write error-free and efficient scripts. They deal primarily with the grouping and
replacement (dereferencing) of variables. Several of these characters deal with other basic necessities of
language syntax. See Table 2 on page 4 for a list of Tcl special characters. Syntactic rules and usage
examples of most special characters can be found in the Command Reference Guide on page 5 and the
Example Scripts on page 82.

Table 2.

Character Name Definition

$ Variable Substitution Directly precedes a variable name. Accesses a
saved variable within a Tcl expression by
substituting the variable name with its stored
value.

[] Subcommand Substitution Bracketed commands will be parsed and replaced
inline with its resulting value.

“ ” Word Grouping with Substitution Bracketed words are handled as a single
argument, but variables will be substituted with
their stored value.

{ } Word Grouping without Substitution Braced words are handled as a single argument,
but variables will not be replaced.

\ Backslash Substitution Any subsequent character is replaced by itself.
This escape mechanism allows other special
characters to be used without triggering special
processing. When placed at the end of a line of
code, it allows the code to continue on to the next
line. Good for long strings of code.

Comment Appearing at the beginning of a statement any text
or commands that follow will not be parsed and will
return no result.

; Statement Separator Serves as a separator that allows a new script to
follow immediately as if it was placed on a new
line.

Tcl Special Characters

Examples for the use of special characters are contained within the usage examples in the
Command Reference Guide on page 5

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 5

Command Reference Guide

All Tcl commands available in AOS are defined in the table below. They are listed in two categories:
Commonly Used Commands and Additional Commands.

Table 3. Tcl Command List

Commonly Used Commands Additional Commands

Page Page Page

6 cli 26 add64 54 incr

7 dir 27 append 55 info

8 echo 28 array 57 join

9 eval 29 break 58 lappend

10 expr 30 case 59 linsert

11 fileinfo 31 catch 60 list

12 for 32 cmdtrace 61 lrange

13 foreach 33 concat 62 lreplace

14 if 34 continue 63 lsearch

15 input 35 copy 64 lsort

16 isset 36 currenttime 65 proc

17 lindex 37 delete 66 regexp

18 llength 38 error 68 regsub

19 read 39 event 69 rename

20 set 40 format 70 return

21 sleep 41 formattime 71 scan

22 string 43 geticmpmessages 73 settime

24 while 45 getportname 74 split

25 write 46 getprotocolname 75 strtoip

47 getprotocols 76 subtract64

48 gettcpports 77 trace

50 getudpports 78 unset

52 global 79 uplevel

53 greaterthan64 80 upvar

To avoid confusion, variables within command syntax descriptions have been enclosed in
parentheses. Different types and positions of bracketing can be used within a command depending on
the desired results. See Table 2 on page 4 for a description of bracketing types and functions.

Command Reference Guide Tcl Scripting in AOS

 6 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

cli
The cli command is one of the most important AOS Tcl commands because it allows you to access any
AOS command. This gives your scripts the the ability to automate routine tasks within the system. This
command is issued in the Global Configuration mode. In order to issue a command in the Enable level the
AOS do command is added before the AOS command.

Syntax Description

cli [do] (AOS command)

Usage Examples

The following example prints the results of the cli command, that tells the unit to run the AOS traceroute
command, to the screen.

echo “Performing a traceroute:

[cli do traceroute 192.168.0.1]”

Output

Performing a traceroute:

Type CTRL+C to abort

Tracing route to 192.168.0.1 over a maximum of 30 hops

122ms20ms20ms192.168.0.65

223ms20ms20ms192.168.0.1

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 7

dir
The dir command returns a list of all files (without paths) located in the specified directory. If the desired
directory is located in a different directory than where the script is run then a full path must be provided.

Syntax Description

dir (directory name)

Usage Examples

The following example prints to the screen a list of all files in the root directory.

echo “[dir //]”

Output

3200start

NV3200A-16-00-18-E.biz

NV3200B-boot-11-02-05.biz

startup-config

startup-config.bak

test1.tcl

Command Reference Guide Tcl Scripting in AOS

 8 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

echo
The echo command prints any argument to the screen. Typically the double quotes symbol is used to
indicate a grouping of words to be printed to the screen. The double quotes symbol preserves the spacing
of the characters within. However, in some cases no grouping is used and other times brackets might be
required to create the desired output.

Syntax Description

echo (arguments)

Usage Examples

The following example prints the specified argument to the screen.

echo "This file is a test."

Output

This file is a test.

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 9

eval
The eval command forces the evaluation of one or more arguments. It concatenates all arguments and
passes them to the Tcl interpreter recursively. Rather than making a single pass, the Tcl interpreter will
parse multiple times until the script is evaluated to its logical conclusion. The result of the evaluation is the
returned value, or any error message that is generated during the evaluation. This command is useful for
storing scripts within variables to be evaluated at a later time.

Syntax Description

eval (argument)

Usage Examples

The following example prints to the screen the result of the evaluation of the specified argument.

Set myvariable “set v 100”

Eval $myvariable

Echo $v

Output:

100

Command Reference Guide Tcl Scripting in AOS

 10 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

expr
The expr command concatenates all arguments and evaluates the result as a Tcl expression. Expressions
are composed of math functions and/or operators that are combined with arguments (operands) to create
valid Tcl expressions, and generally yield numeric results. For more information on operators used in Tcl
expressions, see Table 1 on page 3.

Syntax Description

expr (arguments)

Usage Examples

The following example prints to the screen the result of the mathematical expression.

set x “expr {20 / 4}”

echo $x

Output:

5

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 11

fileinfo
The fileinfo command is one of several AOS-specific Tcl commands that have been included to simplify file
management. By using one of several options this command allows you to obtain specific information
about the given file, directory, or device. Variations of this command include:

fileinfo size <filename> returns the size of the given file in bytes

fileinfo date <filename> returns the date of the given files creation. This is returned as seconds since
January 1st 1970, 12:00 AM.

fileinfo exists <filename> returns a 1 if the file or directory exists and a 0 if it does not.

fileinfo isdir <name> returns a 1 if the object in question is a directory and 0 if it is a file.

fileinfo free <device name> returns the free space available on the device.

fileinfo total <device name> returns the total space available on the device.

fileinfo used <device name> returns the total space used on the device.

Syntax Description

fileinfo size (filename)

fileinfo date (filename)

fileinfo exists (filename)

fileinfo isdir (name)

fileinfo free (device name)

fileinfo total (device name)

fileinfo used (device name)

Usage Examples

The following example tests for the existence of a file named file1and prints the results of that test to the
screen.

write file1 “This is a test file.”
set test [fileinfo exists file1]
if {$test == 1} {

echo “Valid Tcl file.”
} else {

echo “Not a valid Tcl file.”
}

Output

Valid Tcl file.

Command Reference Guide Tcl Scripting in AOS

 12 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

for
The for command is a looping command. The (start), (next), and (body) arguments must be Tcl command
strings. The (test) argument should be a Tcl expression string. The (start) string is executed first. The (test)
string is then evaluated as a Tcl expression. If the result of (test) is not zero, then the (body) argument is
executed followed by the (next) argument. The command continues to loop in this manner until (test) finally
equals 0.

Syntax Description

for (start) (test) (next) (body)

Usage Examples

The following example evaluates the (test) argument and continues to increment the variable as indicated
in the (body) argument until the (test) argument no longer passes.

for {set x 0} {$x<10} {incr x} {
echo “x is $x”

}

Output

x is 0

x is 1

x is 2

x is 3

x is 4

x is 5

x is 6

x is 7

x is 8

x is 9

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 13

foreach
The foreach command is a looping command. For each element in (list), the command assigns that
element (in order from first to last) to (variable name). The (body) argument is a Tcl command string that is
then executed for each element in (list). The total number of loops is determined by the number of
elements in (list). The in argument is optional and exists for clarity, having no effect on the command.

Syntax Description

foreach (variable name) in (list) (body)

Usage Examples

The following example prints to the screen the value of the variable, as indicated by the body argument, for
each value provided in the list.

foreach x {1 2 3 4 5 6 7 8 9} {
echo “x is $x”

}

Output

x is 1

x is 2

x is 3

x is 4

x is 5

x is 6

x is 7

x is 8

x is 9

The output below is identical to the output of the for command. In the case of the for
command, the incr command is necessary in order to achieve this output.

Command Reference Guide Tcl Scripting in AOS

 14 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

if
The if command concatenates and evaluates its arguments as Tcl expressions. Expressions can be
Boolean values where 0 is false and anything else is true or they can be a string value such as true or yes
for true and false or no for false. If the expression is true, then the body is executed and at this point the
command is finished. Otherwise, the next elseif expression is evaluated and, if true, its body executed,
and so on. If none of the expressions are true, then the final else body (body4 in the example) is executed.

There can be any number of elseif/then arguments included in an if command. The then and elseif
argments are not required and are used primarily for formatting and legibility of the code. If no final else
argument is used at the end, then the final body statement will be invalid. If none of the previous
expressions matched, then the value returned would be an empty string. Otherwise, the command returns
the value of the body script that was executed.

Syntax Description

if (expression1) then (body1) elseif (expression2) then (body2) elseif (expression3) then (body3) else
(body4)

Usage Examples

The following example checks the value of the variable against several options and then performs the body
argument corresponding to the matching expression.

set variable 2

if {$variable == 0} {
echo "the answer is 0"

} elseif {$variable == 1} {
echo "the answer is 1"

} elseif {$variable == 2} {
echo "the answer is 2"

} else {
echo "variable is not 0, 1, or 2"

}

Output

the answer is 2

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 15

input
The input command is used when a script requires user input. The input command pauses the script and
waits for user-returned input. The command returns what the user typed in after a carriage return. The
returned value can be stored in a variable and used by other commands within the script. No arguments
are necessary when using the input command. This is an AOS specific command.

Syntax Description

[input]

Usage Examples

The following example outputs the echoed text to the screen and uses the input command to pause the
script and wait for user input.

echo “Are you right or left handed? (R/L\)”
set variable [input]
echo “You entered $variable”

Output

Are you right or left handed?

You entered L

Command Reference Guide Tcl Scripting in AOS

 16 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

isset
The isset command tests for the existence of a given variable. If the variable is set the command returns
a 1. If the variable is not set the command returns a 0.

Syntax Description

isset (variable name)

Usage Examples

The following example checks for the existence of the variable and prints the results to the screen.

set variable 17

echo “[isset {variable}]”

Output

1

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 17

lindex
The lindex command is designed to retrieve a specified element from a provided list. Elements are
numbered beginning with 0. If the index number is greater than or equal to the number of elements in the
list, then an empty string is returned. If instead of an integer, the argument end is provided in the place of
index then the final element of list is returned.

Syntax Description

lindex (list) (index)

lindex (list) end

Usage Examples

The following example retrieves the fifth element, based on the index of four, from the provided list and
prints the result to the screen.

echo "[lindex {1 2 3 4 5 6 7 8} 4]"

Output

5

Command Reference Guide Tcl Scripting in AOS

 18 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

llength
The llength command returns a number equal to the number of elements in the provided list.

Syntax Description

llength (list)

Usage Examples

The following example prints to the screen the total number of elements in the provided list.

echo "[llength {a b c d e f g h I j}]"

Output

10

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 19

read
The read command is often used in conjunction with the write (refer to page 25) command. The contents
of the (filename) will be returned. It can be used to return the contents of another Tcl script file, which can
then be executed, if a Tcl script has been broken down into multiple files for easier maintenance.

Syntax Description:

read (filename)

Usage Examples

The following example creates a user-defined procedure to read the contents of a file that is then
evaluated by the Tcl interpreter.

write testfile.tcl [echo "This file is a test."]
rename testfile.tcl testfile2.tcl

proc returnfile {filename} {
eval [read $filename]

}

returnfile testfile2.tcl

Output

This file is a test.

Command Reference Guide Tcl Scripting in AOS

 20 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

set
The set command is used to create variables and give them a value. (name) is the name of the variable
and (value) is the string to be stored in the variable. The set command can also be used to return the value
stored in an existing variable by executing the command without the (value) argument.

Syntax Description

set (name) (value)

set (name)

Usage Examples

The following example sets the value of a variable and prints that value to the screen.

set variable 10

echo “$variable”

Output

10

 If the variable name is followed by an element within parenthesis it is indicative of an array
element. The enclosed element is the index of the array and the name before the
parenthesis is the array name.

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 21

sleep
The sleep command is used to pause a script at a desired point. The (seconds) argument establishes the
length of the pause.

Syntax Description:

sleep (seconds)

Usage Examples:

The following example pauses the script for 15 seconds before continuing to evaluate the remaining
contents of the script.

sleep 15

Command Reference Guide Tcl Scripting in AOS

 22 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

string
The string command is quite flexible with a number of available option arguments. This option argument
dictates the type of string operation performed. Common operations include string comparisons, finding
the length of the string, finding characters within the string, replacing characters within the string, and
returning characters from within the string.

string compare performs a character by character comparison between two strings. The
command returns -1, 0, or 1 depending on whether (string1) is
alphabetically less than, equal to, or greater than (string2).

string first searches (string2) for a sequence of characters that matches exactly the
characters contained in (string1). If a match is found the command returns
the index of the first character in the first match. If a match is not found -1 is
returned.

string index returns the character located within the string that corresponds to the
number located in the (character index) argument. Characters are counted
beginning with 0. If the (character index) is greater than or equal to the
number of characters within the string then an empty string is returned.

string last searches (string2) for a sequence of characters that matches exactly the
characters contained within (string1). If a match is found the command
returns the index of the first character in the last match. If a match is not
found -1 is returned.

string length Returns a decimal string corresponding to the number of characters within
the string.

string match compares a pattern to the provided (string). If the pattern matches the
(string) contents exactly a 1 is returned. If it does not match a 0 is returned.
Within the pattern certain special sequences may appear.

* Matches any sequence of characters in the (string).

? Matches any single character in the (string).

[chars] Matches any character in the set given by chars. If a
sequence of the form x-y appears in chars, any character between x
and y will match.

\x Matches the single character x, where x is one of the following: * ?
[] \. This prevents the interpretation of the characters * ? [] \ in a
pattern.

Syntax Description

string compare (string1) (string2)

string first (string1) (string2)

string index (string) (character index)

string last (string1) (string2)

string length (string)

string match (pattern) (string)

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 23

Usage Examples

The following example compares the user input with provided string and prints the appropriate result to the
screen.

echo “Would you like to test a string match?”
set answer [input]
if {[string match “[yY][eE][sS]”}{

echo “You typed yes”
}else{

echo “You didn’t type yes, but we tested it anyway.”
}

Output

Would you like to test a string match?

you typed yes

Command Reference Guide Tcl Scripting in AOS

 24 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

while
The while command repeats the (body) continually for as long as the (test) condition is met. The (test)
condition is evaluated and, if the Boolean result is true, the (body) is executed. The (test) condition is
evaluated again and the process repeats until the test condition returns a false value.

Syntax Description

while (test) (body)

Usage Examples

The following example sets the variable x to 5. Then, using the while command, the (test) argument is
evaluated and the value of the variable is displayed. The remainder of the (body script) increments the
value of the variable and continues to do so as long as the (test) argument passes.

set x 5

while {$x < 10} {

 echo "x is $x"

 incr x

}

Output

x is 5

x is 6

x is 7

x is 8

x is 9

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 25

write
The write command writes the given (string) to a file with the specified (filename). The string is returned
using the read command (refer to page 19).

Syntax Description

write (filename) (string)

Usage Examples

The following example uses the write command to create a file named testfile. The contents of testfile are
then printed to the screen.

write testfile “This file is a test.”

echo "[read testfile]"

Output

This file is a test.

Command Reference Guide Tcl Scripting in AOS

 26 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

add64
The add64 command adds two number arguments and returns the total value of the numbers. The add64
command allows 24-digit (64-bit) numbers where the expr (refer to page 10) command only allows 10-digit
signed (32-bit) numbers.

Syntax Description

Add64 (argument 1) (argument 2)

Usage Examples

The following example adds two arguments together and prints the results to the screen.

echo "[add64 12398745879 27567839423]"

Output

39966585302

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 27

append
The append command is used when necessary to add values to the end of an existing set variable. The
(variable name) is accessed and the data contained in the (value) argument is appended to the existing
values stored in the variable.

Syntax Description

append (variable name) (value)

Usage Examples

The following example sets a variable, appends new data to the variable, and prints the results to the
screen.

set variable “a b c ”

append variable “d e”

echo $variable

Output

a b c d e

Command Reference Guide Tcl Scripting in AOS

 28 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

array
The array command allows for the manipulation of data arrays. An array is a searchable set of indexed
data. Each piece of data within the array is paired with an element name or index. Several array options
are available for the manipulation and reading of the data contained within the specified array. These
include setting array values, searching for specific data within an array, and returning the data stored within
the array. Options for this command include:

array anymore Determines if all elements from the specified (search ID) have been
processed. If a 1 is returned there are still unprocessed elements
remaining. If all elements have been processed a 0 is returned.

array donesearch Permanently terminate an array search for the specified (search ID).

array names Returns a list of indexes for the array. If a (pattern) is specified the
command only returns the indexes that match the pattern.

array nextelement Returns the next element index within a given array that has not yet been
processed. If all elements have been processed an empty string is returned.

array size Returns a decimal string equal to the number of elements in the array. It
returns 0 if the (array name) is not valid.

array startsearch Initiates an element by element search of a given array. The command
returns a search ID value.

Syntax Description

array anymore (array name) (search ID)

array donesearch (array name) (search ID)

array names (array name) (pattern)

array nextelement (array name) (search ID)

array size (array name)

array startsearch (array name)

Usage Examples

The following example creates an array named FavoriteColors that contains two value/index pairs.The
array is then searched and its contents formatted and printed to the screen.

set FavoriteColors(jack) blue
set FavoriteColors(jill) green
set id [array startsearch FavoriteColors]
while {[set name [array nextelement FavoriteColors $id]] != ""} {

echo "$name likes $FavoriteColors($name)"
}
array donesearch FavoriteColors $id

Output

jack likes blue

jill likes green

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 29

break
The break command causes the termination of a loop within a looping command. When located in nested
loops, the break command causes the script to abort the innermost looping command. No arguments are
necessary.

Syntax Description

break

Usage Examples

The following example uses the break command to terminate a loop once the test conditions are met.

set variable 0

while 1 {

 echo $variable

 incr variable

 if {$variable == 10} break

}

Output

0

1

2

3

4

5

6

7

8

9

Command Reference Guide Tcl Scripting in AOS

 30 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

case
The case command matches the value of (string) against each (pattern list). If (string) matches a (pattern
list) then the following (body) argument is executed by the Tcl interpreter. Wildcards may be used within a
(pattern list). Refer to string match under the string command on page page 22 for further information on
wildcards. This command is similar in function to the switch command found in some versions of Tcl.

Syntax Description

case (string) (pattern list) (body) (pattern list) (body)

Usage Examples

The following example sets the value of a string and uses the case command to match a string to one of
two possible options. The results of that match are then executed, printing the appropriate text to the
screen.

set string def

case $string {abc} {echo "match1"} {def} {echo "match2"}

Output

match2

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 31

catch
The catch command prevents a script from halting when an error occurs. Typically a Tcl script aborts when
an error occurs. Using the catch command the specified error message is displayed and the specified
(script) continues to run allowing the script to handle errors internally. If an error occurs within the script a 1
is set as the value of (variable name). If no error occurs then a 0 is set as the value of (variable name).

Syntax Description

catch (script) (variable name)

Usage Examples

The following example uses the catch command to print an error message to the screen while allowing the
script to continue running.

catch {set variable2 [open "invalidfile"]} variable

if {$variable == 1} {

 echo "An error occurred"

}

Output

An error occurred

This output is returned only if invalidfile is actually invalid

Command Reference Guide Tcl Scripting in AOS

 32 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

cmdtrace
The cmdtrace command prints a trace statement for all commands executed at the specified level or
below. The top (level) is indicated by a 1. If (on) is specified all commands at all levels are traced. The AOS
debug tcl command must be enabled for cmdtrace messages to be printed to the screen. This command
is primarily used during script writing, to aid in troubleshooting. Multiple command options may be used to
achieve the desired trace output. Options for this command include:

notruncate Prevents the truncation of all commands and evaluated arguments.

noeval Causes arguments to be printed unevaluated.

flush Causes a stdio flush to occur after every line is written.

procs Allows only procedure calls to be traced.

Syntax Description

cmdtrace (on / level)

cmdtrace (on / level) notruncate

cmdtrace (on / level) noeval

cmdtrace (on / level) flush

cmdtrace (on / level) procs

Usage Examples

The following example uses a script containing a for loop. The cmdtrace command is used to print the
scripts debugging information to the screen.

cmdtrace on
for {set i 0} {$i < 3} {incr i} {

echo [expr {$i - 1}]
}
cmdtrace off

Output
2007.07.11 9>30:50 TCL_CLI.test1.tcl script starting
2007.07.11 9>30:50 TCL_CLI.test1.tcl 1: for {set i 0} {$1 , 4} {incr i} {
\n echo [expr {$i - 1}]\n}
2007.07.11 9>30:50 TCL_CLI.test1.tcl 2: set i 0
2007.07.11 9>30:50 TCL_CLI.test1.tcl 3: expr {$i - 1}
2007.07.11 9>30:50 TCL_CLI.test1.tcl 2: echo -1
2007.07.11 9>30:50 TCL_CLI.test1.tcl 2: incr i
2007.07.11 9>30:50 TCL_CLI.test1.tcl 3: expr {$i - 1}
2007.07.11 9>30:50 TCL_CLI.test1.tcl 2: echo 0
2007.07.11 9>30:50 TCL_CLI.test1.tcl 2: incr i
2007.07.11 9>30:50 TCL_CLI.test1.tcl 3: expr {$i - 1}
2007.07.11 9>30:50 TCL_CLI.test1.tcl 2: echo 1
2007.07.11 9>30:50 TCL_CLI.test1.tcl 2: incr i
2007.07.11 9>30:50 TCL_CLI.test1.tcl 1: cmdtrace off -1
0
1

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 33

concat
The concat command combines any number of lists into one list. It removes any excess whitespace from
the leading and trailing list elements, and leaves a single space between each list argument. The
command returns the concatenated list.

Syntax Description

concat (list1) (list2) (list3)

Usage Examples

The following example concatenates a list so that excess characters and whitespace are removed.

echo [concat a b {c d e} {f {g h}}]

Output

a b c d e f {g h}

Command Reference Guide Tcl Scripting in AOS

 34 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

continue
Like the break (refer to page 29) command, the continue command is typically called within a looping
command. It forces the current script to abort the innermost looping command, but, unlike break, it
continues forward with the next iteration of the loop. No argument is required for the continue command.

Syntax Description

continue

Usage Examples

In the following example the continue command is used to skip the body argument for several iterations of
a looping command.

foreach x {0 1 2 3 4 5 6 7 8 9} {
if {$x < 3} continue

echo $x
}

Output

3

4

5

6

7

8

9

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 35

copy
The copy command creates a duplicate of a specified file and saves it to a new filename.

Syntax Description

copy (filename) (new filename)

Usage Examples

The following example copies the contents of testfile.tcl to testfile2.tcl and returns the contents of the
second file to the screen using a user defined procedure.

write testfile.tcl [echo "This file is a test."]

copy testfile.tcl testfile2.tcl

proc returnfile {filename} {
eval [read $filename]

}

returnfile testfile2.tcl

Output

This file is a test.

Command Reference Guide Tcl Scripting in AOS

 36 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

currenttime
The currenttime command sets a valid Tcl variable with a value that corresponds to the time, in seconds,
since January 1st, 1970, 12:00 AM.

Syntax Description

currenttime (variable)

Usage Examples

The following example sets the current time and prints it to the screen along with a legibly formatted
version of the current time (Refer to formattime on page 41).

set time 0

currenttime time

echo "$time is the number of seconds since January 1, 1970"

set formattedtime 0

formattime $time formattedtime "EEE, MMM d, yyyy HH:mm:ss zzzz"

echo "the time is: $formattedtime"

Output

1173567451 is the number of seconds since January 1, 1970

the time is: Sat, Mar 10, 2007 22:57:31 Universal Coordinated Time

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 37

delete
The delete command removes a specified file from the unit.

Syntax Description

delete (filename)

Usage Examples

The following example uses the fileinfo command to test the existence of a file that was deleted using the
delete command and prints the results to the screen.

write file1 "This is a test file."
delete file1
if {[fileinfo exists $file1]}{

echo “Valid file.”
}else{

echo “Not a valid file.”
}set test [fileinfo exists file1]

Output

Not a valid file.

Command Reference Guide Tcl Scripting in AOS

 38 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

error
Use the error command to exit the script immediately with the specified error message.

Syntax Description

error (error message) (error info) (error code)

Usage Examples

The following example defines an error message to be printed to the screen if the variable value is not
numeric.

set variable a

if ![regexp {^[0-9]+$} $variable] {

 error "variable must be numeric"

}

echo “you should not see this”

Output

variable must be numeric

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 39

event
The event command creates custom event messages that are logged through the AOS Event System
and, when configured, through SYSLOG. The event command (type) is a priority level that affects how the
AOS Event System handles the user-defined (message text). These levels are, from lowest to highest
priority, debug, info, notice, warning, error, and fatal.

Syntax Description

event debug (message text)

event info (message text)

event notice (message text)

event warning (message text)

event error (message text)

event fatal (message text)

Usage Examples

The following example creates a notice level event along with a custom message to indicate when a
particular event that the script is monitoring has occurred. This event can be forwarded to a SYSLOG
server if available.

event notice “ppp 1 went down, changing configuration to use ppp 3 for DSCP tagging”

Command Reference Guide Tcl Scripting in AOS

 40 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

format
The format command uses a (format string) as a pattern for output. Using the % symbol and the letter of
the desired conversion option (similar to the ANSI C sprintf procedure), the values provided in each
(argument) are converted and subsituted into the resulting output. There must be one conversion option
for each (argument).

%d Converts integer to a signed decimal string.

%u Converts integer to an unsigned decimal string.

%i Converts integer to a signed decimal string. The integer may either be in decimal, in octal
(with leading 0) or in hexadecimal (with leading 0x).

%o Converts integer to an unsigned octal string.

%x Converts integer to unsigned hexadecimal string, using digits.

%c Converts integer to the Unicode character it represents.

%s No conversion; just insert string.

%f Converts floating-point number to a signed decimal string (xx.yyy, where the number of y's is
determined by the precision (default: 6). If the precision is 0, then no decimal point is output.

%e Converts floating-point number to scientific notation in the form x.yyye±zz, where the number
of y's is determined by the precision (default: 6). If the precision is 0, then no decimal point is
output.

%g If the exponent is less than -4 or greater than or equal to the precision, then convert
floating-point number as for %e. Otherwise, it is converted as for %f. Trailing zeroes and
trailing decimal point are omitted.

Syntax Description

format (format string) (argument1) (argument2) (argument3)...

Usage Examples

The following example converts the two variables to their hexadecimal equivalent and prints the results to
the screen.

set variable 10

set variable2 18

echo "[format "%x %x" $variable $variable2]"

Output
a 12

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 41

formattime
The formattime command is used to display time in a user-friendly format. The (input variable) time is a
measure of time based on the number of seconds since January 1,1970, 12:00 AM. This value can be read
by using the currenttime command (refer to page 36) and established using the settime command (refer
to page 73). The time in (input variable) is accessed, formatted using the pattern contained in (format), and
stored in the (output variable). The number and type of characters (shown in the table below) contained in
the (format) portion affect how the time stored in the (output variable) is displayed. If a character is used
four or more times back to back, then the full formatted display is used, whereas if fewer than four
characters are used, the display will be abbreviated if an abbreviated version is available. For example,
EEEEEEE displays Tuesday, where EEE displays Tue.

Syntax Description

formattime (input variable) (output variable) (format)

Symbol Definition Example

G Era Designator AD

y Year 2007

M Month 6-June

d Day of Month 30

h Hour in a 12 Hour Clock (1-12) 10

H Hour, 0-23 21

m Minute 37

s Second 17

S Millisecond 852

E Day of Week Tuesday

D Number of Day in Year 181

a/p AM/PM PM

k Hour, 1-24 24

K Hour in a 12 hour clock (0-11) 0

z Time Zone CST

‘ Escape for Text

‘ ‘ Single Quote ‘

Command Reference Guide Tcl Scripting in AOS

 42 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

Usage Examples

The following example sets the current time and prints it to the screen along with a legibly formatted
version of the current time.

set mytime 0

set output 0

settime mytim2 2007 5 1 8 27 30

echo "$mytime"

formattime $mytime output "EEE, MMM d, yyyy HH:mm:ss z"

echo "the time is: $output"

Output

1178008050

the time is: Tue, May 1, 2007 08:27:30 UTC

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 43

geticmpmessages
The geticmpmessages command returns a numeric list of Internet Control Message Protocol (ICMP)
codes along with their corresponding types and messages. These values are saved as an array with the
specified (variable name). The format for the array is the ICMP code followed by its type then its name.

Syntax Description

geticmpmessages (variable name)

Usage Examples

The following example returns an array of all ICMP information and formats that information before printing
it to the screen.

geticmpmessages messages
set length [array size messages]
echo "name code type"
for {set i 0} {$i < $length} {incr i} {
 echo "[lindex $messages($i) 2] [lindex $messages($i) 0] [lindex $messages($i) 1]"
}

Output

name code type

echo-reply0 0

precedence-unreachable 1 32783

net-unreachable 3 0

host-unreachable 3 1

protocol-unreachable 3 2

port-unreachable 3 3

packet-too-big 3 4

source-route-failed 3 5

network-unknown 3 6

host-unknown 3 7

host-isolated 3 8

dod-net-prohibited 3 9

dod-host-prohibited 3 10

net-tos-unreachable 3 11

host-tos-unreachable 3 12

administratively-prohibited 3 13

unreachable 3 65535

source-quench 4 0

net-redirect 5 0

host-redirect 5 1

net-tos-redirect 5 2

Command Reference Guide Tcl Scripting in AOS

 44 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

host-tos-redirect 5 3

redirect 5 65535

alternate-address 6 0

echo 8 0

router-advertisement 9 0

router-solicitation 10 0

ttl-exceeded 11 0

reassembly-timeout 11 1

option-missing 12 1

timestamp-request 13 0

timestamp-reply 14 0

information-request 15 0

information-reply 16 0

mask-request 17 0

mask-reply 18 0

traceroute 30 65535

conversion-error 31 65535

mobile-redirect 32 65535

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 45

getportname
The getportname command returns a well-known port number and name based on the specified
(protocol) (TCP or UDP) and the (port number). The command returns a list with the specified port number
followed by the port name. If a (port number) and (protocol) do not have a well-known port name then an
empty string is returned.

Syntax Description

getportname (protocol) (port number)

Usage Examples

The following example returns the number and name of the specified port to the screen.

echo "[getportname tcp 80]"

Output

80 www

Command Reference Guide Tcl Scripting in AOS

 46 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

getprotocolname
The getprotocolname command returns the well-known port number and name of the IANA protocol
associated with the specified (number). The command returns a list with the number followed by the name.
If the specified (number) is not associated with a valid protocol, then an empty string is returned.

Syntax Description

getprotocolname (number)

Usage Examples

The following example returns the name and number of the desired protocol and prints them to the screen.

echo "[getprotocolname 6]"

Output

6 tcp

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 47

getprotocols
The getprotocols command returns a list of IANA protocol numbers and well known names. This
command creates an array called (variable name) which is an array of lists where the list format is the
protocol number followed by its name.

Syntax Description

getprotocols (variable name)

Usage Examples

The following example returns an array of all protocol information and formats that information before
printing it to the screen.

getprotocols protocols
set length [array size protocols]
echo "number name"
for {set i 0} {$i < $length} {incr i} {
 echo "[lindex $protocols($i) 0] [lindex $protocols($i) 1]"
}

Output

number name

1 icmp

4 ip

6 tcp

17 udp

47 gre

50 esp

51 ahp

Command Reference Guide Tcl Scripting in AOS

 48 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

gettcpports
The gettcpports command returns a numeric list of Transmission Control Protocol (TCP) well-known port
numbers and names. This command creates an array called (variable name) which is an array of lists
where the list format is the protocol number followed by its name.

Syntax Description

gettcpports (variable name)

Usage Examples

The following example returns an array of all TCP port information and formats that information before
printing it to the screen.

gettcpports ports
set length [array size ports]
echo "num name"
for {set i 0} {$i < $length} {incr i} {
 echo "[lindex $ports($i) 0] [lindex $ports($i) 1]"
}

Output

num name

7 echo

9 discard

13 daytime

19 chargen

20 ftp-data

21 ftp

22 ssh

23 telnet

25 smtp

37 time

43 whois

49 tacacs

53 domain

70 gopher

79 finger

80 www

101 hostname

109 pop2

110 pop3

111 sunrpc

113 ident

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 49

119 nntp

179 bgp

194 irc

443 https

496 pim-auto-rp

512 exec

513 login

514 syslog

515 lpd

517 talk

540 uucp

543 klogin

544 kshell

Command Reference Guide Tcl Scripting in AOS

 50 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

getudpports
The getudpports command returns a numeric list of User Datagram Protocol (UDP) well-known port
numbers and names. This command creates an array called (variable name) which is an array of lists
where the list format is the protocol number followed by its name.

Syntax Description

getudpports (variable name)

Usage Examples

The following example returns an array of all UDP port information and formats that information before
printing it to the screen.

getudpports ports

 set length [array size ports]

 echo "num name"

 for {set i 0} {$i < $length} {incr i} {

 echo "[lindex $ports($i) 0] [lindex $ports($i) 1]"

 }

Output

num name

7 echo

9 discard

37 time

42 nameserver

49 tacacs

53 domain

67 bootps

68 bootpc

69 tft

111 sunrpc

123 ntp

137 netbios-ns

138 netbios-dgm

139 netbios-ss

161 snmp

162 snmptrap

177 xdmcp

195 dnsix

434 mobile-ip

496 pim-auto-rp

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 51

500 isakmp

512 biff

513 who

514 syslog

517 talk

520 rip

Command Reference Guide Tcl Scripting in AOS

 52 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

global
The global command allows the writer of the script to access global variables within a proc procedure
body, rather than just local variables defined within the procedure. The procedure is essentially a user
defined command that can be called within the script.

Syntax Description

global (variable name)

Usage Examples

The following example accesses the variable created on the first line of the script within the user defined
procedure.

set globalvar 5
proc sum {} {

set variable2 10
global globalvar
set answer [expr {$globalvar + $variable2}]
return $answer

}
echo "[sum]"

Output

15

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 53

greaterthan64
The greaterthan64 command evaluates whether or not the value of the first argument is greater than the
value of the second argument. If the value is greater, a 1 is returned. If the value is less, a 0 is returned.
The greaterthan64 command allows 24-digit (64-bit) unsigned numbers where the expr (refer to page 10)
command only allows 10-digit (32-bit) signed numbers.

Syntax Description

greaterthan64 (argument 1) (argument 2)

Usage Examples

The following example compares the value of a variable to 10 to see if it is greater, and displays the result
to the screen.

set variable 17

if [greaterthan64 $variable 10] then {
echo "$variable is greater than 10"

} else {
echo "$variable is less than or equal to 10"

}

Output

17 is greater than 10

Command Reference Guide Tcl Scripting in AOS

 54 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

incr
The incr command takes an existing integer (variable name) and increments it. By default the (variable
name) is incremented by 1, but specifying an (increment) value after the (variable name) will cause the
number to increment by that value instead, including -1.

Syntax Description

incr (variable name) (increment)

Usage Examples

The following example increments the value of a variable by 10 and returns that result to the screen.

set mynumber 15

set variable [incr mynumber 10]

echo "$variable"

Output

25

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 55

info
The info command is intended to return a variety of information concerning the current state of the Tcl
interpreter depending on which option is chosen from the available possibilities.

info args returns a list containing the names of all arguments located within the specified Tcl procedure.

info body returns the entire body contents of the specified procedure.

info cmdcount returns the total number of commands parsed by the Tcl interpreter.

info commands returns a list of all available Tcl commands including user defined procedures. If a pattern
string is specified only commands matching that pattern will be returned.

info complete returns a 1 if the specified command seems to have been written in a syntactically complete
manner. If this is not the case then a 0 is returned.

info default returns the default value of an argument within a user defined procedure and stores it in a
variable. If the argument has no default value then 0 is returned.

info exists returns a 1 if the indicated variable name currently exists and has a set value either globally or
within a user defined procedure. If the variable does not currently exist a 0 is returned.

info globals returns a list of all currently defined global variables. If a pattern string is specified only
variables matching that pattern will be returned.

info level returns a number equal to the stack level of the command calling for the information. If a number
string is specified then the command name and arguments are returned of the command that is equal to
that command level in the stack.

info library returns the value of the tcl_library variable, which contains the location of the directory where
the Tcl variable library is stored.

info locals returns a list of all local variables defined within the current procedure. Global variables used in
the script will not be returned. If a pattern string is specified only variables matching the pattern will be
returned.

info procs returns a named list of all user defined procedures. If a pattern string is specified only
procedures matching that pattern will be returned.

info script returns the innermost file name of the script that is currently being processed by the Tcl
interpreter.

info tclversion returns the value of the global tcl_version variable.

info vars returns a list of all visible variables. A visible variable includes both local and global variables as
well as variables which do not currently have set values but have been established by the variable
command. If a pattern string is specified only variables matching that pattern will be returned.

Syntax Description

info args (procedure name)

info body (procedure name)

info cmdcount

info commands (pattern)

Command Reference Guide Tcl Scripting in AOS

 56 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

info complete (commands)

info default (procedure name) (argument) (variable name)

info exists (variable name)

info globals (pattern)

info level (number)

info library

info locals (pattern)

info procs (pattern)

info script (filename)

info tclversion

info vars (pattern)

Usage Examples

The following example creates a user defined procedure then returns the contents of that procedure to the
screen using the info command.

set variable1 5
proc sum {} {

set variable2 10
global variable1
set answer [expr {$variable1 + $variable2}]
return $answer

}
echo "[sum]"
echo "[info body sum]"

Output

15

Set variable2 10

global variable1

set answer [expr {$variable1 + $variable2}]

return $answer

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 57

join
The join command takes the provided list (list name) and joins each list element together separated by the
(separator) character. The formatted list is then returned. If no (separator) character is provided, then by
default the command inserts a space.

Syntax Description

join (list name) (separator)

Usage Examples

The following example places the provided separator character between each element of a list and prints
the result to the screen.

set ip {192 168 1 100}
echo "your IP address is [join ip .]"

Output

your IP address is 192.168.1.100

Command Reference Guide Tcl Scripting in AOS

 58 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

lappend
The lappend command takes the provided values and appends them to the specified (list name). Each of
the value arguments is added to the list as its own element separated by a space.

Syntax Description

lappend (list name) (values)

Usage Examples

The following example appends a new set of characters to an existing list and prints the list to the screen.

set list {1 a 2 b 3 c 4 d}

lappend list 9 8 7 6 5

echo $list

Output

1 a 2 b 3 c 4 d 9 8 7 6 5

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 59

linsert
The linsert command inserts specified (elements) into a specified (list) in the location indicated by the
(index) value. If no (index) is provided or the value is 0, then the (elements) are placed at the beginning of
the list. If the index is greater than or equal to the number of elements in the list, then the elements will be
placed at the end of the list. The end option may also be used in place of the index value to indicate that
the elements should be appended to the list.

Syntax Description

linsert (list) (index) (elements)

linsert (list) end (elements)

Usage Examples

The following example positions two new characters into at the fifth position (That is the fourth indexed
starting at 0) and prints that list to the screen.

set list {a a a a a a a a}

echo "[linsert $list 4 1 1]"

Output

a a a a 1 1 a a a a

Command Reference Guide Tcl Scripting in AOS

 60 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

list
The list command returns a structured sequence of elements which can be comprised of numbers, strings,
or other lists. A list is defined as words or numbers separated by spaces, tabs, or carriage reurns. This
command takes care of formatting the output list so it can be correctly parsed by the list specific
commands. Information on these list specific commands can be found on the following pages:

lindex on page 17

llength on page 18

lappend on page 58

linsert on page 59

lrange on page 61

lreplace on page 62

lsearch on page 63

lsort on page 64

Syntax Description

list (elements)

Usage Examples

The following example creates a list from a string of provided characters.

list 1 a 2 b 3 c 4 d

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 61

lrange
The lrange command returns a range of elements from a provided Tcl list. This new list is created by
referencing the (first) and (last) indexed places indicating the beginning and ending elements of the new
list. If end is used in place of the (last) argument, then the range will extend through the end of the list. If
the (first) index argument is invalid, the command will return an empty string.

Syntax Description

lrange (list) (first) (last)

lrange (list) (first) end

Usage Examples

The following example creates a new list by extracting characters from the provided list based on the given
range. The new list is then printed to the screen.

echo "[lrange {1 a 2 b 3 c 4 d} 3 end]"

Output

b 3 c 4 d

Command Reference Guide Tcl Scripting in AOS

 62 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

lreplace
The lreplace command returns a new list by replacing characters in the original list as indicated by the
given indexes. The (first index) and (last index) positions indicate the beginning and ending elements to be
replaced with new elements. A 0 is used to indicate the first element in the list, and the end option can be
used to replace the last element in the list. If the (last index) is less than zero but greater than the (first
index) then the new elements are placed at the beginning of the list. If no new elements are indicated, then
the elements in the specified index positions are deleted.

Syntax Description

lreplace (list) (first index) (last index) (new elements)

Usage Examples

The following example replaces the two characters in index positions 3 and 4 in the provided list with the
new characters (z z). The resulting list is printed to the screen.

echo “[lreplace {a 1 b 2 c 3 d 4} 3 4 z z]”

Output

a 1 b z z 3 d 4

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 63

lsearch
The lsearch command searches the elements of the provided (list) for the specified (pattern) and returns
the indexed position of the first element matching the pattern. If there is no matching element found in the
list, a -1 is returned.

Syntax Description

lsearch (list) (pattern)

Usage Examples

The following example searches the provided list, returning the index value of the element that matches
the search pattern c. This result is then printed to the screen.

echo “[lsearch {a 1 b 2 c 3 d 4} c]”

Output

4

Command Reference Guide Tcl Scripting in AOS

 64 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

lsort
The lsort command takes the elements of a specified (list) and returns the elements sorted
alphanumerically. First number elements are sorted, from lowest to highest, followed by all Capital letter
elements from A to Z, then lowercase letter elements from a to z.

Syntax Description

lsort (list)

Usage Examples

The following example sorts the characters from the original list and prints the sorted list to the screen.

echo "[lsort {q 0 a bob 3 r 1 n 5 mary l P v}]"

Output

0 1 3 5 P a bob l mary n q r v

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 65

proc
The proc command creates a Tcl procedure that can be called within the script just like other Tcl
commands. A procedure is created with the (name) specified. The (arguments) necessary for the
command are specified next, followed by the (body). When the command is called by (name) the (body) is
executed using any (arguments) provided.

Syntax Description

proc (name) (arguments) (body)

Usage Examples

The following example creates a procedure for adding two numbers together. The procedure is then run
and its results printed to the screen.

proc sum {variable1 variable2} {
set answer [expr {$variable1 + $variable2}]
return $answer

}
echo "[sum 5 10]"

Output

15

Command Reference Guide Tcl Scripting in AOS

 66 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

regexp
The regexp command compares a given (regular expression) against a (string). If the two match then a 1
is returned. If they don’t match a 0 is returned. The –nocase switch may be used to prevent the interpreter
from case sensitive matching. Multiple (match variables) can be appended to the command to store
information concerning which parts of the string matched the expression. The first match variable stores
the characters of the string that match the leftmost sub-expression. Each subsequent match variable holds
the next piece of matching data left to right.

It is necessary to understand regular expressions to make full use of this command. A regular expression
is a method for describing the pattern for which a string is being searched. There are a variety of
characters provided for pattern matching. See the table below for more information on these characters.

Symbol Description

* Matches the largest series (0 or more) of the preceding expression.

+ Matches the largest series (1 or more) of the preceding expression.

? Indicates (using the Boolean quantifier) that the pattern may or may
not occur.

{m} A sequence with exactly m number of matches.

{m,} A sequence with m or more matches.

{m,n} A sequence no less than m and no more than n matches.

*? Non-greedy form of *. If there is more than 1 match, selects the
smallest of the matches.

+? Non-greedy form of +. If there is more than 1 match, selects the
smallest of the matches.

?? Non-greedy form of ?. If there is more than 1 match, selects the
smallest of the matches.

{m}? Non-greedy form of {m}. If there is more than 1 match, selects the
smallest of the matches.

^ The following expression only matches when at the beginning of a
string.

$ The preceding expression only matches when at the end of a string.

(exp) Exp is a series of regular expression characters and treated as a
single entity to be matched. Results are returned in match variable if
specified.

(?: exp) Exp is a series of regular expression characters and treated as a
single entity to be matched. Results are not returned in a match
variable.

() Matches empty string, returns the match to a variable.

(?:) Matches empty string, does not return the match to a variable.

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 67

Syntax Description

regexp (regular expression) (string)

regexp (regular expression) (string) (match variable)

regexp –nocase (regular expression) (string) (match variable)

Usage Examples

The following example compares the given variable to an expression. The result is stored in a second
variable and then compared to two options. The appropriate result is returned to the screen.

set variable1 3b
set variable2 [regexp {[0-9]+[a-z]} $variable1]
if {$variable2 == 1} then {

echo "The string matches the expression"
} else {

echo "The string does not match the expression"
}

Output

The string matches the expression

Command Reference Guide Tcl Scripting in AOS

 68 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

regsub
The regsub command compares a given (regular expression) against a (string). If the two match then a 1
is returned. If they don’t match a 0 is returned. The -nocase switch may be used to prevent the interpreter
from case sensitive matching. In addition to matching patterns it replaces those matches with the
(substitution spec) argument. Like the regexp command the results of the command can be stored in
multiple match variables. If the results are not stored in match variables the first substituted value is
returned as the result of the command. Only the first match will be substituted unless the -all switch is
specified.

For more information on regular expressions refer to regexp on page 66.

Syntax Description

regsub (regular expression) (string) (substitution spec)

regsub (regular expression) (string) (substitution spec) (match variables)

regsub -nocase (regular expression) (string) (substitution spec)

regsub -all (regular expression) (string) (substitution spec)

Usage Examples

The following example matches the given variable against the pattern. The matching string is then
replaced by the specified substitution string and the result is saved as another variable. The variables
values are then printed to the screen.

set variable1 3B

regsub -nocase {[0-9]+[a-z]} $variable1 ZZ variable2

echo "The original input was $variable1 and the new output is $variable2"

Output

The original input was 3B and the new output is ZZ

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 69

rename
The rename command renames the specified file. In cases where the file to be renamed or the location
which it is to be saved is in any directory other than where the script is run, then a complete path must be
specified. The extension used in the file name to be accessed or written to must also be included. The
returned value of the command is an empty string.

Syntax Description

rename (old filename) (new filename)

Usage Examples

The following example takes an existing file (testfile.tcl) and give it a new name (testfile2.tcl). The contents
of that file are then returned to the screen.

write testfile.tcl [echo "This file is a test."]

rename testfile.tcl testfile2.tcl

proc returnfile {filename} {
eval [read $filename]

}

returnfile testfile2.tcl

Output

This file is a test.

Command Reference Guide Tcl Scripting in AOS

 70 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

return
The return command is used within a procedure to force an immediate return from the procedure to the
body of the Tcl script. Any (arguments) following the return command will be used as the value returned by
the procedure.

Syntax Description

return (arguments)

Usage Examples

The following example uses the return command to exit the procedure with the returned value of the
specified variable. This result is then printed to the screen.

proc sum {variable1 variable2} {
set answer [expr {$variable1 + $variable2}]
return $answer

}
echo "[sum 5 10]"

Output

15

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 71

scan
The scan command scans a string based on the provided format and is similar to the ANSI C sscanf
procedure. There are a number of different options that can be used to format the string. Using the %
symbol and the letter of the desired conversion option, a new string is returned. The result of each
conversion can be saved in a variable, however if no variable names are specified, the returned value is
the formatted string. If no conversions are performed on the string the command returns a -1.

d Specifies that the input must be a decimal integer, the value is stored or returned as a decimal
string

o Specifies that the input must be an octal integer, the value is stored or returned as a decimal
string

x Specifies that the input must be a hexadecimal integer, the value is stored or returned as a
decimal string

u Specifies that the input must be a decimal integer, the value is stored or returned as an
unsigned decimal string

i Specifies that the input must be an integer, the value is determined to be decimal, octal, or
hexadecimal and the value is stored or returned as a decimal string

c Specifies that the input is a single character, the binary value of the character is stored or
returned as a decimal string

s Specifies that the input consists of all characters up to the next whitespace character, the
resulting characters are stored or returned

e or f or g Specifies that the input must be a floating point number consisting of an optional sign, a string
of decimal digits, and an optional exponent. It is stored or returned as a floating point string

[chars] Specifies that the input must be any matching characters. The matching string is stored or
returned.

[^chars] Specifies that the input must be any non-matching characters. The non-matching string is
stored or returned.

Syntax Description

scan (string) (format) (variable names)

Command Reference Guide Tcl Scripting in AOS

 72 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

Usage Examples

The following example scans the given hexidecimal string and formats the contents as decimal numbers
based on the formatting options. The results are stored in three variables that are printed to the screen.

set string "#08D03F"

echo "[scan $string "#%2x%2x%2x" 1 2 3]"

echo $1

echo $2

echo $3

Output

3

8

208

63

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 73

settime
The settime command sets an (variable name) to the number of seconds since January 1st, 1970 based
on the date input. The provided date/time is formatted as year (yyyy), month (mm), day (dd), hour (hh,
24-hour format), minutes (mm), seconds (ss).

Syntax Description

settime (variable name) (year) (month) (day) (hour) (minutes) (seconds)

Usage Examples

The following example prints to the screen an elapsed time in seconds based on the provided input time
and date.

set time 0

settime time 2007 5 1 8 27 30

echo "$time"

Output

1178008050

Command Reference Guide Tcl Scripting in AOS

 74 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

split
The split command returns a Tcl list generated by splitting the given string at the location of each of the
split characters. The split characters are removed from the resulting string. This command is used in
conjunction with the join command.

Syntax Description

split (string) (split characters)

Usage Examples

The following example creates a list from the provided data and prints the resulting list to the screen.

echo -n “What is your IP Address?”
set ip [input]
set ip [split $ip .]
echo “The split IP is $ip”

Output

What is your IP address?

The split IP is 10 23 197 246

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 75

strtoip
The strtoip command is used to convert a standard dotted decimal string (IP address) into a Tcl list. The
given IP address is formatted and saved in the output variable. All decimal dots are removed and replaced
with spaces making each section of the address an element in a Tcl list which is saved as the (variable
name). The IP address string is checked for correct formatting. If the formatting is incorrect an empty string
is set in (variable name).

Syntax Description

strtoip (variable name) (IP address)

Usage Examples

The following example creates a list from the provided IP address and prints the resulting list to the screen.

set ipaddress "10.23.197.246"

set ipstring 0

strtoip ipstring $ipaddress

echo "The IP Address $ipaddress is equivalent to the list \"$ipstring\" in Tcl"

Output

The IP Address 10.23.197.246 is equivalent to the list “10 23 197 246” in Tcl

Command Reference Guide Tcl Scripting in AOS

 76 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

subtract64
The subtract64 command subtracts two number arguments and returns the resulting value. The subtract64
command allows 24-dight (64-bit) unsigned numbers, while the expr (refer to page 10) command only
allows 10-digit (32-bit) signed numbers.

Syntax Description

subtract64 (argument 1) (argument 2)

Usage Examples

The following example subtracts two values and prints the result to the screen.

echo "[subtract64 40 27]"

Output

13

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 77

trace
The trace command is used to monitor the variables activity within a Tcl script. The variable option initiates
a trace on the specified (variable name), while the vdelete option terminates the trace. Specific types of
variable activity can be specified using the r (read), w (write), and u (unset) options. The u option shows
variables that have been permanently deleted. The vinfo option returns a list of each trace set on the
specified (variable name).

Syntax Description

trace variable (variable name) [r | w | u] (Tcl command)

trace vdelete (variable name) [r | w | u] (Tcl command)

trace vinfo (variable name)

Usage Examples

The following example outputs the results of the trace command to the screen for a visual representation of
the number of times the incremented i variable is read during the course of the script.

set i 0
set count 0
trace variable i r {echo $count}
for {} {$i < 3} {incr i } {

echo "this is a test $i"
incr count

}

Output

0 i r

0 i r

this is a test 0

1 i r

1 i r

1 i r

this is a test 1

2 i r

2 i r

2 i r

this is a test 2

Command Reference Guide Tcl Scripting in AOS

 78 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

unset
The unset command removes one or more previously set variables. Multiple variable names can be
specified to unset more than one variable with a single command. The command returns an empty string.

Syntax Description

unset (variable name)

Usage Examples

The following example removes a valid Tcl variable from existence.

unset variable1
if {[isset variable1]}{

echo “you should not see this”
}else{

echo “the variable was unset”
}

Output

the variable was unset

Tcl Scripting in AOS Command Reference Guide

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 79

uplevel
The uplevel command executes a script at the specified stack level. If no (level) is specified the default
value is 1, or one level up from the current level. An integer preceded by the # symbol specifies an
absolute level whereas an integer value for level without a # symbol indicates a level value relative to the
current level. The result of the command is the value of the evaluated (script body) at the specified (level).

Syntax Description

uplevel (level) (script body)

Usage Examples

The following example creates a procedure that effects a variable at the highest level of the call stack. The
variable values are printed to the screen and then the procedure is run, setting the global variable to a
different value. That value is then printed to the screen.

proc test {} {
uplevel 1 {set myvariable "yes"}

}
set myvariable "no"
echo “before: $myvariable”

test
echo “after: $myvariable”

Output

before: no

after: yes

Command Reference Guide Tcl Scripting in AOS

 80 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

upvar
The upvar command creates a link from a (global variable), one defined in the global namespace or the
previous stack frame, to a (new variable), one defined within a procedure. Any references to the (new
variable) in the procedure are passed from the (new variable) to the (global variable). If no (level) within
the stack is specified the command defaults to the global level.

Syntax Description

upvar (level) (global variable) (new variable)

Usage Examples

The following example creates a procedure that takes a global variable and gives it a new value. The
variables value is printed to the screen. Then the procedure runs and the variables new value is printed to
the screen.

proc test {} {
upvar 1 variable1 localvariable
set localvariable "yes"

}
set variable1 "no"
echo $variable1

test
echo $variable1

Output

no

yes

Tcl Scripting in AOS Creating Tcl Scripts in AOS

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 81

Creating Tcl Scripts in AOS

There are two methods for creating Tcl scripts in AOS. Scripts can be created as individual files or saved
inline as part of a units configuration file.

Scripts that are individual files can be created using a plain text editor and then uploaded to the units flash
memory. For more information on this process refer to the Tcl Quick Configuration Guide on page 90.

Inline scripts are created using the tcl script command. They are stored in the unit’s configuration, and can
be referenced by name. To create an inline script use the tcl script command from the Global
Configuration mode command prompt with the syntax, tcl script <name> <delimiter>, where <name>
specifies the name used to reference the Tcl script and <delimiter> specifies the character used to
terminate the input mode for the specified Tcl script. Once the command has been executed Tcl script
commands can be entered to create the script. Once the delimiter character is entered and the enter key is
pressed the script is saved. Inline scripts are executed using the same set of commands as scripts saved as
individual files.

Running Tcl Scripts in AOS

There are three methods available for running Tcl scripts in AOS. Each of these methods is applicable to
particular situations. Understanding all three methods makes it possible to fully utilize the capabilities of
AOS Tcl scripts.

The first method for running a Tcl script is encountered when AOS runs flash provisioning on a unit.
Flash provisioning runs automatically on start up when a CompactFlash card is installed in an AOS unit
with CompactFlash capability. Once the unit boots and a CLI session begins, it will look for the
flashprov.txt file located on the CompactFlash card. This file will indicate the name of a .biz file, a startup
configuration file, and a Tcl script file named startup-script. These files are then transferred to the unit and
run. The contents of the Tcl script file are defined by the user and remain on the unit to be run at each
bootup. This method makes it simple to create a configuration script that automatically runs allowing
simple setup of the unit in the field.

The second method used to run Tcl scripts is the AOS run tcl command. The command syntax is run tcl
<name>, where <name> is a valid Tcl script file or named inline Tcl script. This method is ideal for
testing scripts because it is flexible and can be useful in a variety of different situations.

The third method for running Tcl scripts is based on tracks. Tracks facilitate dynamic configuration
changes or system health checking using Tcl scripts. Tracks can indicate the occurrence of a system event
that can be used to trigger the execution of a script. To set a Tcl script to run based on a track the tcl run
command is used with the syntax tcl run <name> track <track name> [on-pass | on-fail]. For more
information about tracks refer to the Network Monitor Track Configuration Command Set section of the
AOS Command Reference Guide available online at ADTRAN’s Support Forum at
https://supportforums.adtran.com.

https://supportforums.adtran.com

Example Scripts Tcl Scripting in AOS

 82 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

Example Scripts

Example Network Configuration Script

In order to effectively illustrate the basics of writing a functional script, we will begin with a simple
network configuration script that generates a startup configuration file based on user input provided along
the way. The example script, shown in full in Table 4 on page 82, uses most of the basic Tcl commands
necessary to understand when writing future scripts. It illustrates the basic conventions of programming in
general, as well as the specific syntactic rules of Tcl. For reference purposes, line numbers have been
added in a column to the left of each line of the script. On the pages following the table, each line is broken
down into the use of its commands, its function within the context of the script as a whole, and the syntax
necessary for the script to function properly.

This script creates a simple startup configuration file based off a standard configuration used by the
fictitious ACME corporation. The only knowledge required by the field technician in this situation is
whether or not the unit is using DHCP or static addressing for its public address.

Table 4. Network Configuration Script Example

1 #clear the screen

2 echo ""

3 echo ""

4 echo ""

5 echo ""

6 echo ""

7 echo ""

8 echo ""

9 echo ""

10 echo ""

11 echo ""

12 echo ""

13 echo "ACME configuration script"

14 echo ""

15

16 #see if they are using DHCP or not

17 echo -n "are you using DHCP? \[y/N\]: "

18 set value [input]

19 if { $value == "yes" || $value == "YES" || $value == "Yes" || $value == "Y" || $value == "y"

20 set dhcp 1

Tcl Scripting in AOS Example Scripts

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 83

21 } else {

22 set dhcp 0

23 echo -n "what is the ip address of the public interface? "

24 set primaryIp [input]

25 echo -n "what is the netmask of the public interface? "

26 set primaryMask [input]

27 echo -n "what is the gateway ip address of the public interface? "

28 set primaryGateway [input]

29 }

30

31 #clear the screen again

32 echo ""

33 echo ""

34 echo ""

35 echo ""

36 echo ""

37 echo ""

38 #show them their config and write the file to flash

39 echo "Your configuration is:"

40 if { $dhcp } {

41 echo "eth0/1 Interface: DHCP"

42 set addressLine "ip address dhcp"

43 set routeLine ""

44 } else {

45 echo "eth0/1 IP Address: $primaryIp"

46 echo "eth0/1 Netmask: $primaryMask"

47 echo "eth0/1 Gateway IP: $primaryGateway"

48 set addressLine "ip address $primaryIp $primaryMask"

49 set routeLine "ip route 0.0.0.0 0.0.0.0 $primaryGateway"

50 }

51

Example Scripts Tcl Scripting in AOS

 84 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

The first section of the example script (Lines 1 through 15) simply clear the AOS CLI and introduce the
script.

#clear the screen

Line 1 uses the # character to denote that any subsequent text is a comment and will be disregarded by the
Tcl interpreter. The purpose of a comment when writing a script is to explain the function of the section of
code that follows it. Thorough commenting is a good coding practice. It is particularly important in large,
complicated scripts to provide reference points for subsequent programmers.

echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”

Lines 2 through 12 use the Tcl echo command followed by the “ ” characters. Used with the “ ” characters
the echo command prints an empty string and a carriage return. The script uses Lines 2 through 12 to scroll
upward and clear the screen. The echo command can be used in conjunction with the –n (no new line)
option, to suppress the carriage return.

echo “ACME configuration script”

Line 13 uses the Tcl echo command to introduce the script by printing the text string ACME
configuration script to the CLI.

52 set file [read startup-config.base]

53

54 eval "set file \"$file\""

55 delete startup-config

56 write startup-config $file

57

58 #extra carrage return because the CLI replaces the last line instead of just making a new one

59 echo ""

Any Tcl command can be commented out of the code by preceding it with the # character.

Tcl Scripting in AOS Example Scripts

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 85

echo “ ”

Line 14 adds another carriage return. The screen has now been cleared and the purpose of our script has
been printed to the CLI.

Line 15 is left empty. Leaving a blank line between sections of code is another method of formatting the
script for greater legibility.

The second section of the script (Lines 16 through 30) determines, based on user input, whether or not
Dynamic Host Configuration Protocol (DHCP) is being used. Depending on user input, the script will
continue to prompt the user for more information.

#see if they are using DHCP or not

Line 16 uses the # symbol to create a comment explaining the section of code that follows.

echo –n “are you using DHCP? \[Y/N\]: ”

Line 17 uses the Tcl echo command in conjunction with the –n option, preceding the text string. The -n
option suppresses the carriage return and causes the user-input cursor to appear directly after the text string
rather than on a new line. Using the backslash character (\) immediately before the bracket characters ([])
prevents them from being processed as a special character. They are output instead as part of the text string.

set value [input]

Line 18 uses the Tcl set command to establish the value of the variable named value. The Tcl input
command enclosed in brackets indicates the script is now waiting for user input with the cursor appearing
directly after the echoed text from Line 17. The user input text will be stored as a string within the value
variable.

if { $value = = “yes” || $value = = “YES” || $value = = “Yes” || $value = = “Y” || $value = = “y” } { set
dhcp 1

Lines 19 and 20 use the Tcl if command to evaluate the user input from Lines 17 and 18 and determine
what information needs to be obtained next. The if command is issued with a braced expression that checks
the user-input text from Line 17 stored in the value variable. In order to offer some flexibility and allow
users the option of inputting yes in variety of ways, the logical or (||) operator is used. If any of the listed
logical or options are matched in the value variable, then the first body argument (set dhcp 1) is executed.
The argument uses the Tcl set command to set the value of the variable dhcp to 1. If none of the logical or
options are matched then the first body argument is skipped, and the else portion of the if command is
executed.

Using the backslash character (\) immediately before any special character prevents it
from being processed as a special character. They are output instead as part of the text
string. See Table 2 on page 4 for a list of special characters and their functions.

Example Scripts Tcl Scripting in AOS

 86 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

} else {
set dhcp 0
echo –n “what is the ip address of the public interface ”
set primaryIp [input]
echo –n “what is the netmask of the public interface? ”
set primaryMask [input]
echo –n “what is the gateway ip address of the public interface? ”
set primaryGateway [input]

}

Lines 21 through 29 contain the else portion of the if command in conjunction with the echo –n to print
several questions to the screen prompting the user for input. The Tcl set command in conjunction with the
Tcl input command is used to set a value for each variable (primaryIp, primaryMask, and
primaryGateway) in turn.

It is important to note that when an opening bracket ([) or brace ({) is used within a command there must
be a closing bracket (]) or brace (}) to match it. The if command in the example script use several such
brackets and braces. Using line spacing and brace/bracket positioning that mimics the example script and
the examples contained in the Command Reference Guide will ensure that your scripts are syntactically
correct.

Line 30 is left empty for greater legibility.

The third section (Lines 31 through 51) clears the screen again and displays the configuration that has just
been stored in the user-input variables in the script. Notice that the author of the script has continued to use
thorough commenting throughout.

#clear the screen again

Line 31 comments that the screen will be cleared again.

echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”
echo “ ”

Lines 32 through 37 use the Tcl echo command to scroll and clear the screen.

#show them their config and write the file to flash

Line 38 comments on next few lines of code.

When an opening bracket or brace is used within a command there must be a closing
bracket or brace to match it. For example, the opening bracket of the else portion of the if
command on Line 21 is closed on Line 29.

Tcl Scripting in AOS Example Scripts

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 87

echo “Your configuration is:”

Line 39 displays the text string to the CLI introducing the user’s configuration.

if {$dhcp} {
echo “eth0/1 Interface: DHCP”
set addressLine “ip address dhcp”
set routeLine “ ”

Line 40 uses the Tcl if command to determine if a dhcp variable has been set (refer to Lines 17 through
20). If the variable is set, then the text strings and matching variables from Lines 41 through 43 are
displayed. If no dhcp variable has been set, then the first body argument is skipped and the else portion of
the if command is executed.

} else {
echo “eth0/1 IP Address: $primaryIp”
echo “eth0/1 Netmask: $primaryMask”
echo “eth0/1 Gateway IP: $primaryGateway”
set addressLine “ip address $primaryIp $primaryMask”
set routeLine “ip route 0.0.0.0 0.0.0.0 $primaryGateway”

}

Lines 44 through 50 display the user’s configuration based on user input received in Lines 23 through 28.

Line 51 is left blank.

This brings us to the final section (Lines 52 through 59) of the script. All the necessary information has
been obtained and stored in variables, and the resulting configuration has been displayed to the screen.
Now the new configuration must be saved.

set file [read startup-config.base]

Line 52 uses the Tcl set command to set a new variable named file. The Tcl read command (placed within
brackets to allow for command substitution) reads the contents of the external file startup-config.base and
stores it as a string within the file variable. The format of the startup-config.base file (shown below) is a
standard configuration file with the exception that it contains two variables (recognized by the preceding $
symbol).

int eth 0/1
$addressLine
no shut

$routeLine
end

Line 53 is left blank.

Example Scripts Tcl Scripting in AOS

 88 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

eval “set file \”$file\ “ ”

Line 54 uses the Tcl eval command to evaluate the contents of the file variable using the Tcl interpreter.
Using the Tcl set command, the resulting contents are stored in the file variable. This is done so that the
two variables that are referenced in the startup-config.base file (addressLine and routeLine) are
replaced with the contents previously stored in those variables (see Lines 48 and 49). The new
configuration file is now complete and must be saved.

delete startup-config

Line 55 deletes the old startup-config file from the unit using the Tcl delete command.

write startup-config $file

Line 56 writes the contents of the file variable (set in Line 52) to a new startup-config file using the Tcl
write command.

#extra carriage return because the CLI replaces the last line instead of just making a new one
echo “ ”

Lines 57 through 59 leave a blank line for readability, comment on why an extra carriage return was added,
and adds the carriage return.

Example VRRP Test Script

The following example script aids in testing the Virtual Router Redundancy Protocol (VRRP) feature
available on some AOS products. For more information on VRRP functionality in AOS products, refer to
the VRRP for AOS configuration guide available online at ADTRAN’s Support Forum at
https://supportforums.adtran.com. The VRRP feature allows multiple physical routers to act as a single
virtual router in order to diminish loss of connectivity in the event of a router or port failure. To simulate
this type of failure this script alternately turns on one Ethernet interface and turns off another as it repeats
itself.

Table 5. VRRP Test Script Example

1 #VRRP Test Script

2 for {set i 0} {$i < 10000} {incr i 1} {

3 # turn off the interfaces and output the output of running

4 # this command to the terminal

5 echo [cli {

6 interface eth 0/1

7 shutdown

8 exit

9 interface eth 0/2

10 shutdown

11 exit

https://supportforums.adtran.com

Tcl Scripting in AOS Example Scripts

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 89

Line 1 uses a comment to introduce the script.

Lines 2 through 24 use a single Tcl for loop to repeat the body argument a specified number of times. The
first argument enclosed in braces in the for command sets the value of the variable named i to 0. The
number of repetitions is determined by the value set in the second braced argument or 10000. Tcl compares
the value of the variable i and as long as the value is less than 10,000 then it executes the next argument.
The last argument instructs Tcl to increment the value of the variable i variable by 1. The body argument is
then executed.

Lines 3 and 4 use the # symbol to create comments to explain the function of the AOS commands accessed
within the body.

Lines 5 through 12 issue a series of AOS commands to be executed by the Tcl script. The AOS commands
in this example shut down the specified interfaces. The Tcl echo command in Line 5 is used to display the
result of the AOS commands to the CLI as they are being executed.

Multiple AOS commands can be run using a single Tcl cli command. It is often necessary to run multiple
AOS commands under one cli command; for example, running subcommands in different AOS command
sets. Each new execution of the cli command results in a new occurrence of the CLI. AOS commands that
are nested, requiring certain AOS commands to be run before others can be run, must all be run in one cli
command in order for those dependencies to work.

12 }]

13 sleep 15

14 echo [cli {

15 interface eth 0/1

16 no shutdown

17 exit

18 interface eth 0/2

19 no shutdown

20 exit

21 }]

22 sleep 15

23 echo "In the for loop, and i == $i"

24 }

Multiple AOS commands can be run using a single cli command. It is often necessary to
execute multiple AOS commands under one Tcl cli command; for example, running
subcommands in different AOS command sets. Each new execution of the cli command
results in a new occurrence of the CLI.

Tcl Quick Configuration Guide Tcl Scripting in AOS

 90 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

Line 13 uses the Tcl sleep command to instruct the script to pause for a certain number of seconds. In this
case 15 seconds.

Lines 14 through 21 issue AOS commands that reactivate the interfaces deactivated in Lines 5 through 12
and display the result to the CLI.

Line 22 uses the Tcl sleep command to pause the script for 15 seconds.

Line 23 displays the text string and the current value of the i variable. Each time through the script’s for
loop, the i value is increased by 1 until the value equals 10,000. At that point the test fails and the script
ends.

Tcl Quick Configuration Guide

1. Open a plain text editor, or execute the tcl script command from the Enable mode command prompt.
Most operating systems provide a plain text editor. Do not use word processor software for generating
Tcl script files. Word processors contain proprietary control characters that can cause the script to
function improperly. Alternately, the copy console command can be used in the CLI to enter text. For
more information on the copy console command refer to the AOS Command Reference Guide available
online at ADTRAN’s Support Forum at https://supportforums.adtran.com.

2. Construct a script using the applicable Tcl commands, operators, and special characters. The majority
of the work involved in writing the script will occur during this step. Specific instructions for writing
the script will vary drastically depending on the purpose of the script. Following the syntactic rules and
logical constructs provided in this document will help ensure a properly functioning script.

3. Save the script. No particular file extension is required for a Tcl file, however it is recommended that a
.tcl extension be used for the sake of consistency. If the file is intended to be executed by flash
provisioning, then the file must be named startup-script.

4. Upload the script file to the unit. Using a web browser, FTP to the unit using its IP address, and upload
the script onto the device. If your web browser does not have FTP capability, a commercial FTP client
can be used.

If the copy console command was used to construct the script then this step is not neccessary.

If the script is intended for flash provisioning then it should be loaded onto the unit’s CompactFlash
card where flash provisioning configuration files are stored rather than on the unit.

5. Troubleshoot the script. Run the script by using the AOS run tcl command. If the script halts, then the
Tcl interpreter will indicate which command caused the error and why it occurred. If this is not enough

If you are using the tcl script command to generate your script, skip to Step 5.

https://supportforums.adtran.com

Tcl Scripting in AOS Troubleshooting

61202880L1-29.3C Copyright © 2014 ADTRAN, Inc. 91

information to successfuly locate the error, then it may be neccessary to use the Tcl cmdtrace
command. Use the plain text editor to correct the script and repeat Step 4.

6. Run the script. At this point the script can be run from the AOS CLI as desired using the run tcl
command. If the script is to be triggered based on a track then then run tcl command should be used
with the track option as detailed in the section Running Tcl Scripts in AOS on page 81.

Troubleshooting

Troubleshooting a Tcl script can be easily handled by those with experience in software development.
While Tcl is a straightforward language with relatively simple and logical syntax, there are several
problems that can occur. It is possible to have an invalid logical construct that could result in an endless
loop or otherwise improperly functioning script. The most likely cause of an error when writing a Tcl script
is improper syntax. These errors typically cause the script to halt but can cause other unexpected results.

Tcl has basic error handling functionality built in. When an error occurs the Tcl interpreter halts the code
and returns the problem. The interpreter typically provides enough detail to troubleshoot the issue. It will
state which command caused the error and what the error was. In line 3 of Table 6 on page 91 the $
necessary to access variable is missing from the if statement. Due to this error the Tcl interpreter will
output the following error message:

Syntax error in expression “variable == 0”

In a simple script such as this, the error information is specific enough to narrow the problem down to the
expression on line 3.

Table 6. Troubleshooting Script Example

11

In a situation where a script is stuck in an endless loop, the script can be exited using <Ctrl+C>.

1 set variable 2

2

3 if {variable == 0} {

4 echo “Variable is 0”

5 } elseif {$variable == 1} {

6 echo “Variable is 1”

7 } elseif {$variable == 2} {

8 echo “Variable is 2”

9 } else {

10 echo “Variable is not 0, 1, or 2”

}

Troubleshooting Tcl Scripting in AOS

 92 Copyright © 2014 ADTRAN, Inc. 61202880L1-29.3C

The Catch Command

Another method for handling potential errors is to use the catch command. The command (catch on page
31) allows the section of code bracketed within the command to be parsed and continue running even if an
error occurs. It will return a 1 if there is an error within the section of code and a 0 if there is no error. This
value is then saved to a variable if specified. The script continues to run, and the error can then be
corrected at the programmer’s convenience.

	Tcl Scripting in AOS
	Overview
	Hardware and Software Requirements and Limitations
	Basic Tcl Syntax
	Variables
	Commands
	Operators
	Special Characters

	Command Reference Guide
	Creating Tcl Scripts in AOS
	Running Tcl Scripts in AOS
	Example Scripts
	Example Network Configuration Script
	Example VRRP Test Script

	Tcl Quick Configuration Guide
	Troubleshooting
	The Catch Command

